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1. Introduction
Let

S/R an extension of commutative rings

R the integral closure of R in Q(R).

We define

R ⊆ R∗ = {x ∈ S | x ⊗ 1 = 1⊗ x in S ⊗R S} ⊆ S

and we say that

R is strictly closed in S , if R = R∗ holds in S .

R is strictly closed, if R = R∗ holds in R.

Notice that

(R∗)∗ = R∗ in S

R∗ ⊆ T ∗ in S for all R ⊆ T ⊆ S .
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Example 1.1

Let S = k[X ,Y ] be the polynomial ring over a field k.

(1) Let n ≥ 3 and set

R = k[X n−iY i | 0 ≤ i ≤ n, i 6= 1].

Then R is a strictly closed ring with dimR = 2.

(2) Let R = k[X 4,XY 3,Y 4]. Then R∗ = k[X 4,XY 3,X 7Y 5,Y 4] in R.

Example 1.2

Let (R,m) be a RLR with dimR = 2. Let m = (x , y), I = (x3, xy4, y5).
Then the Rees algebra

R(I ) = R[It]

is strictly closed, where t is an indeterminate.
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Example 1.3

Let S = k[[t]] be the formal power series ring over a field k . Consider

R = k[[t3, t8, t13]] ⊆ T = k[[t3, t5]] ⊆ S .

Then R is NOT strictly closed in S = R, but it is strictly closed in T .
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In 1949, Cahit Arf explored the multiplicity sequences of curve
singularities.

In 1971, J. Lipman defined “Arf rings” for one-dimensional CM
semi-local rings.

Definition 1.4 (Lipman, 1971)

Let R be a CM semi-local ring with dimR = 1. Then R is called an Arf
ring, if the following hold:

(1) Every integrally closed open ideal I has a principal reduction.

(2) If x , y , z ∈ R s.t.

x is a NZD on R and
y

x
,
z

x
∈ R,

then yz/x ∈ R.
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Notice that

(1) I n+1 = aI n for ∃ n ≥ 0 and ∃ a ∈ I .

(2) Stability of I (if reduction exists).

Hence

Theorem 1.5 (Lipman, 1971)

Let R be a CM semi-local ring with dimR = 1. Then

R is Arf ⇐⇒ Every integrally closed open ideal is stable.

When R is a CM local ring with dimR = 1,

if R is an Arf ring, then R has minimal multiplicity.
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We assume

(R,m) is a Noetherian complete local domain with dimR = 1

R/m is an algebraically closed field of characteristic 0

Lipman proved:

R is saturated =⇒ R has minimal multiplicity.

Moreover, among all Arf rings between R and R,

∃ the smallest one Arf(R), called Arf closure.

Lipman extends the results of C. Arf about multiplicity sequences.
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Proposition–Definition 1.6

Let R be a CM semi-local ring with dimR = 1. Suppose R is a finitely
generated R-module. Then, among all Arf rings between R and R, there is
the smallest Arf ring Arf(R), called the Arf closure of R.

Conjecture 1.7 (Zariski, 1971)

Let R be a CM semi-local ring with dimR = 1. Suppose R is a finitely
generated R-module. Then the equality

Arf(R) = R∗

holds in R.

Zariski’s conjecture holds if R contains a field (Lipman).

Theorem 1.8 (Main result)

Zariski’s conjecture holds.
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2. Proof of Zariski’s conjecture

Theorem 2.1

Let R be a CM semi-local ring with dimR = 1. Then TFAE.

(1) R is a strictly closed ring.

(2) R is an Arf ring.

known results

Let R be a CM semi-local ring with dimR = 1. Then

R is strictly closed =⇒ R is Arf. (Zariski)

The converse holds if R contains a field. (Lipman)
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Proof of (2) ⇒ (1)
There is a filtration:

R ⊆ J : J ⊆ J2 : J2 ⊆ · · · ⊆ Jm : Jm ⊆ · · · ⊆ R

where J denotes the Jacobson radical of R. Define

R ⊆ RJ =
∪
m≥0

[Jm : Jm] ⊆ R.

For n ≥ 0, we set

Rn =

{
R if n = 0

R
J(Rn−1)
n−1 if n ≥ 1

where J(Rn−1) stands for the Jacobson radical of Rn−1.

Hence
R ⊆ R1 ⊆ · · · ⊆ Rn ⊆ · · · ⊆ R.
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Step 1

The equality R =
∪

n≥0 Rn (= lim
→

Rn) holds.

Step 2

The equality R = R∗ holds in Rn for ∀n ≥ 0.

Lemma 2.2 (Key lemma)

Let (R,m) be a CM local ring with dimR = 1. Suppose that m2 = zm for
some z ∈ m. Let R1 ⊆ C ⊆ R be an intermediate ring s.t. C is a finitely
generated R-module and let

α : C ⊗R C → C ⊗R1 C

be an R-algebra map s.t. α(x ⊗ y) = x ⊗ y for ∀x , y ∈ C. Then

Kerα = (0) :C⊗RC z

holds.

Naoki Endo (Purdue University) Arf closure versus strict closure November 22, 2020 11 / 17



1. Introduction 2. Proof of Zariski’s conjecture 3. Strictly closed rings

Let x ∈ R∗ in R and choose n ≥ 0 such that x ∈ Rn. Since R = lim
→

Rm,

we get

R ⊗R Rn → R ⊗R R = lim
→

(R ⊗R Rm)

x ⊗ 1− 1⊗ x 7→ 0.

There exists ℓ ≥ n such that

R ⊗R Rn → R ⊗R Rℓ, x ⊗ 1− 1⊗ x 7→ 0.

Since

Rn ⊗R Rℓ → R ⊗R Rℓ = lim
→

(Rm ⊗R Rℓ)

x ⊗ 1− 1⊗ x 7→ 0,

there exists p ≥ n such that

Rn ⊗R Rℓ → Rp ⊗R Rℓ, x ⊗ 1− 1⊗ x 7→ 0.
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For q ∈ Z such that q ≥ p and q ≥ ℓ, we obtain

Rp ⊗R Rℓ → Rp ⊗R Rℓ → Rq ⊗R Rq

x ⊗ 1− 1⊗ x 7→ 0 7→ 0

Therefore

x ∈ Rn ⊆ Rq and x ⊗ 1 = 1⊗ x in Rq ⊗R Rq

so that x ∈ R∗ in Rq. Thus x ∈ R. Hence R = R∗ in R.

Theorem 2.3

Let R be a CM semi-local ring with dimR = 1. Then

R is strictly closed ⇐⇒ R is Arf.

Hence, Arf(R) = R∗ holds, provided R is a finitely generated R-module.
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Theorem 2.4

Let R be a CM semi-local ring with dimR = 1. Then

R is Arf =⇒ RG is Arf

for every finite subgroup G of AutR s.t. the order of G is invertible.
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3. Strictly closed rings

Question 3.1

What kind of rings are strictly closed?
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Theorem 3.2

Let R be a commutative ring and T an R-subalgebra of Q(R). Let V be a
non-empty subset of T s.t. T = R[V ]. If fg ∈ R for all f , g ∈ V , then R
is strictly closed in T .

Corollary 3.3

Let R be a commutative ring and J = (a1, a2, . . . , an) (n ≥ 3) an ideal of
R s.t. a21 = a2a3. Set I = (a2, a3, . . . , an) and consider

R = R(I ) ⊆ T = R(J)

Then R is strictly closed in T , provided I contains a NZD on R.

Theorem 3.4

The Stanley-Reisner ring R = k[∆] of ∆ is strictly closed.

Naoki Endo (Purdue University) Arf closure versus strict closure November 22, 2020 16 / 17



1. Introduction 2. Proof of Zariski’s conjecture 3. Strictly closed rings

Thank you for your attention.
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